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Controlling optical memory effects in disordered media with coated metamaterials
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Most applications of memory effects in disordered optical media, such as the tilt-tilt and shift-shift spatial
correlations, have focused on imaging through and inside biological tissues. Here we put forward a metamaterial
platform not only to enhance but also to tune memory effects in random media. Specifically, we investigate the
shift-shift and tilt-tilt spatial correlations in metamaterials composed of coated spheres and cylinders by means
of the radiative transfer equation. Based on the single-scattering phase function, we calculate the translation
correlations in anisotropically scattering media with spherical or cylindrical geometries and find a simple relation
between them. We show that the Fokker-Planck model can be used with the small-angle approximation to obtain
the shift-tilt memory effect with ballistic light contribution. By considering a two-dimensional scattering system,
composed of thick dielectric cylinders coated with subwavelength layers of thermally tunable magneto-optical
semiconductors, we suggest the possibility of tailoring and controlling the shift-shift and tilt-tilt memory effects
in light scattering. In particular, we show that the generalized memory effect can be enhanced by increasing
the temperature of the system, and it can be decreased by applying an external magnetic field. Altogether our
findings unveil the potential applications that metamaterial systems may have to control externally memory
effects in disordered media.
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I. INTRODUCTION

The usual memory effect in light scattering refers to the
short-range angular correlation between a rotated incident
beam over small angles and the resulting speckle pattern
[1–4]. This memory effect shows up by tilting the electromag-
netic field incident upon a diffuser, leading to a corresponding
tilting of the scattered field by the same amount, which is lim-
ited by a certain angular-correlation range [1,5]. These spatial
correlations find applications in areas where knowledge of the
intensity transmission matrices of diffusers is crucial, ranging
from optical communications and wavefront shaping [3,6] to
adaptive optics [7], and especially in biomedical imaging of
structures within soft tissues [8–12].

Recently, a new class of correlations termed the shift-shift
memory effect has been shown to be the Fourier complement
of the traditional tilt-tilt memory effect in light scattering [13].
These shift-shift correlations, which imply a translation-
invariant speckle pattern, do not impose thin scattering layers
at a distance from the target and can be directly determined
during plane illumination from the resulting spatial speckle
autocorrelation function. Recently it has been shown that
the tilt-tilt and shift-shift memory effects actually are special
cases of a more general class of shift-tilt spatial correlations,
as a result of the combination of short-range angular and
translation correlations in scattering media exhibiting for-
ward scattering [14]. This generalized memory effect allows
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for shifting and tilting of a focal spot formed deep within
anisotropically scattering media in an optimal joint shift-tilt
scheme, which finds applications in recording of clear images
from within biological tissues [8–10,14].

Most applications of optical memory effects in disordered
scattering media have been focused on imaging through and
deep within complex dielectric media, especially in biomed-
ical imaging [13,14]. Conversely, little attention has been
devoted to optical memory effects in artificial scattering me-
dia, in which these spatial correlations could be potentially
enhanced and controlled. With this motivation in mind, in the
present paper we investigate the shift-tilt memory effect in
metamaterials composed of core-shell scatterers with spher-
ical or cylindrical geometries. Core-shell particles are known
to exhibit interesting single-scattering responses such as Fano
resonances [15–20], plasmonic cloaking [21–23], enhanced
stored energy [24–26], superscattering [27,28], and near-zero-
forward or zero-backward scattering of light [29,30]. In par-
ticular, we have recently shown that the scattering anisotropy
of a collection of magneto-optical core-shell microcylinders
can be externally tuned by applying a moderate magnetic
field, in the terahertz (THz) frequency range [31]. Here, by
using a system composed of thick dielectric cylinders coated
with subwavelength magneto-optical and thermally tunable
semiconductors, we demonstrate that one can tune and tailor
the shift-tilt memory effect by externally applying a magnetic
field or by varying the temperature.

This paper is organized as follows. In Sec. II A, we provide
an overview of the shift-shift correlation function calculated
within the small-angle approximation (SAA) for large spheres
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and derive a similar expression to be used for cylindrical
scatterers. In Sec. II B, we briefly discuss the generalized
memory effect derived from the Fokker-Planck (FP) light
propagation model and propose an effective distance shift to
be used in the SAA. A comparison of spatial correlation func-
tions in dielectric anisotropically scattering media containing
spherical versus cylindrical scatterers is provided in Sec. III A.
Finally, in Sec. III B, we show the possibility of tuning the
anisotropic memory effect associated with coated scatterers in
the terahertz range by varying the temperature or by applying
an external magnetic field. We summarize our main results in
Sec. IV.

II. ANISOTROPIC MEMORY EFFECT

At time t , for two speckle patterns associated with the
complex electric field E(r, t ) at positions r1 and r2, the optical
memory effect is quantified by the spatial coherence function
(also referred to as the mutual intensity)

�(r1, r2, t ) = 〈E(r1, t ) · E∗(r2, t )〉, (1)

where 〈. . .〉 implies an ensemble average over all possible
realizations of E(r, t ) [3,32]. The details of how to measure
and calculate the shift-shift memory effect in light scattering
by using transmission matrices, and its shift-shift and/or tilt-
tilt generalization using a paraxial model of light propagation,
are discussed in Refs. [13] and [14]. Here, we are interested in
the application of these spatial correlations to metamaterials
consisting of three- and two-dimensional disordered media.
Our aim is to exploit the single-particle scattering solution
for spheres and cylinders to achieve anisotropically scattering
media with a tunable shift-tilt memory effect.

A. Small-angle approximation: Shift-shift correlations for
monodispersed spherical or cylindrical Mie scatterers

Let us consider light scattering in the quasiballistic regime,
in which multiple scattering quantities can be derived by the
single-particle scattering phase function [33,34]. As discussed
in Ref. [13], the translation or shift-shift correlation function
in highly anisotropic scattering media can be accurately cal-
culated in the framework of the Lorenz-Mie theory [33,35].
Indeed, for near-forward-scattering systems, the small-angle
approximation of the radiative transfer (RT) equation provides
accurate shift-shift spatial correlation functions in the quasi-
ballistic regime [13], so that one can apply single-scattering
phase functions based on the Lorenz-Mie theory to describe
ensemble-averaged scattering properties.

Since Eq. (1) for r1 = r2 may produce several defini-
tions of single-scattering phase functions, let us define the
phase function p(θ ) as the probability distribution function
describing the scattered light angular distribution, so that∫

4π
d�ps(θ ) = 1 for spherical particles and

∫ 2π

0 dθpc(θ ) =
1 for cylindrical particles [33,35]. The spatial correlation
between two scattered fields, Esca (r) and Esca(r − �r), of a
system of uncorrelated arbitrary particles can be calculated
from the ensemble average [33]

〈Esca (r) · E∗
sca (r − �r)〉 ∝ I0

∫
V

dVρp(θ ) exp(ık · �r),

(2)

where I0 is the intensity of the incident wave and ρ

is the density of scatterers. Here, �r = |�r| is limited
within the order of the correlation distance and |r| �
�r , so that one can define p(θ ) within the integral [33].
For spherical waves (|Es

sca|2 ∝ 1/r2) in spherical coordi-
nates (r, θ, ϕ) with �r = �r x̂, one has dV exp(ık · �r) =
r2drd� exp(ıα sin θ cos ϕ), where α = k�r and k = |k|.
Considering |θ | � 1 (i.e., sin θ ≈ θ ) and recalling that∫ 2π

0 dϕ exp(ıαθ cos ϕ) = 2πJ0(αθ ), where J0 is the zeroth-
order Bessel function, Eq. (2) retrieves the Fourier-Bessel
transform of a forward-extended ps(θ ) [33]. Conversely,
for cylindrical waves (|Ec

sca|2 ∝ 1/r ) in cylindrical coordi-
nates (r, ϕ, z) with �r = �r ŷ, one has dV exp(ık · �r) =
rdrdθdz exp(ıα sin θ ), where θ = ϕ − π . Imposing |θ | � 1,
it follows that we must consider a Fourier transform of pc(θ )
in polar variables instead of the Fourier-Bessel transform.
Both operations, however, are equivalent to a two-dimensional
Fourier transform reduced by symmetry in the ϕ direction.
Explicitly, with p(θ ) ≈ 0 for |θ | � π/2, we can define for
small scattering angles the Fourier transforms

p̃s(α) ≡ 2π

∫ ∞

0
dθps(θ )J0(αθ )θ, (3)

p̃c(α) ≡ 2
∫ ∞

0
dθpc(θ ) cos(αθ ). (4)

Equation (3) is valid for media whose scattering phase
functions are forward extended, so that the small-angle ap-
proximation of the RT equation can be applied [36,37]. Here,
we propose the use of Eq. (4) for cylindrical scattered waves,
i.e., disordered media composed of parallel cylindrical scat-
terers normally irradiated with plane waves. Since the RT
equation depends not on the shape of scatterers but on the
ensemble averages of intensities, Eq. (4) is the only critical
modification to enter our calculations. As a result, for both
spherical and cylindrical monodispersed scatterers, the trans-
verse coherence function (mutual intensity) for a shift distance
�r in a target plane perpendicular to the incidence direction
k0 is [13,33,36]

�(α) = I0 exp{−τ [1 − �0p̃(α)]}, (5)

where τ = L/	ext is the optical thickness, with 	ext = 1/ρσext,
α = k�r and p̃(α) can be either Eq. (3) or Eq. (4), for spheri-
cal [33,38] or cylindrical scatterers, respectively, with �0 =
σsca/σext being the corresponding single-scattering albedo.
The quantity �(α) can be identified as the two-dimensional
Fourier transform of the point-spread function [39], which is
associated with loss of resolution in images taken through
scattering media [13]. As �(α) is maximal for �r = 0, the
shift-shift correlation function can be defined as CRT(α) ≡
�(α)/�(0), which leads to

CRT(α) = exp{−τ�0[1 − p̃(α)]}. (6)

Equation (6) is calculated in Ref. [13] for large dielectric
spheres (kR � 1) and a low density of scatterers, showing
very good agreement with experimental and simulation data.
The only approximation made is related to the scattering
anisotropy: 〈cos θ〉 ≈ 1. As 〈cos θ〉 → 1, the normalization of
the phase function implies that p̃(0) → 1. The approximate
expressions for the phase functions of large spheres and
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thick cylinders and their corresponding Fourier transforms are
provided in the Appendix.

As p̃(α) ≈ 0, which occurs at α > 2kR for spherical or
cylindrical scatterers (see the Appendix), Eq. (6) reduces to
a constant background exp(−�0τ ) in the correlations, which
depends on the shape of scatterers and decays exponentially
as the scattered light becomes stronger. This constant back-
ground appears for optical thickness τ < 1 and is due to
speckles that are not yet fully developed in the quasiballis-
tic regime [13]. Indeed, for both spherical and cylindrical
waves, �(α) depends only on τ and �0 when α > 2kR

and kR � 1. Using the extinction paradox, it follows that
Qext ≡ σext/σg → 2 as kR → ∞, where σg is the geometric
cross section and Qext is the extinction efficiency. Recalling
the definition of optical thickness, we have τs = L/	s

ext =
(3/4)f Qs

extL/R for spheres and τc = (2/π )f Qc
extL/R for

cylinders, where f is the packing fraction of scatterers. The
application of the extinction paradox and the condition α >

2kR for weakly dissipative scatterers (�0 ≈ 1) allow us to
write a general relation between the transverse coherence
function for monodispersed large spheres and that for thick
cylinders,

�s(α) ≈ [�c(α)]3π/8, (7)

since τs/τc ≈ 3π/8. The main consequence of Eq. (7) is
that the constant background �(α > 2kR) associated with
cylindrical scatterers is slightly larger than that for spheres,
provided the optical parameters and k, R, L, and ρ are the
same.

Equation (7) was derived by invoking geometric arguments
since 4R/3 and πR/2 are obtained from the ratio between the
scatterer volume v and its geometric cross section σg [34].
Hence we conclude that monodispersed scatterers with a
ratio kv/σg higher than kRπ/2 should show greater values
of transverse coherence than monodispersed cylinders with
equivalent parameters. For monodispersed large scatterers of
arbitrary shapes, we may find a constant background derived
from the transverse coherence function that satisfies[

�(k�r )

I0

]kv/σg

≈ exp(−2f kL) (8)

when Qext = 2, �r > 2Reff and 〈cos θ〉 ≈ 1, where Reff is
the effective radius of the scatterers. Equation (8) is an original
result of our study and shows explicitly that the constant
background from the transverse coherence function can be
obtained by geometric parameters alone.

B. Fokker-Planck model of light propagation: Generalized
optical memory effect for lossless dielectric scatterers

Recently, a generalization of the optical memory effect
that takes into account both shift-shift and tilt-tilt anisotropic
memory effects was reported [14]. This generalization allows
one to perform a shift-tilt (�r0,�k0) of the incident field on
the input plane in order to attain a specific shift-tilt (�r,�k)
of the speckle on the target plane. To describe this shift-tilt
generalized correlation function, a paraxial light propagation
model based on the Fokker-Planck equation was developed
and verified experimentally [14]. The FP model is based on a
simplification of the Wigner-function transport equation [32],

which neglects the contribution of the ballistic (unscattered)
light to the two-point spatial coherence function. The approx-
imate solution does not impose any restriction on the shape
of scatterers and is valid for lossless near-forward-scattering
materials with L > 	tr , where 	tr is the transport mean free
path. Explicitly, the spatial correlation function is a functional
of two vector quantities and is given by [14]

CFP(�r,�k)

= exp

[
−L3k2

2	tr

( |�k|2
3k2

− �k · �r
kL

+ |�r|2
L2

)]
, (9)

where 	tr = 1/[ρσsca (1 − 〈cos θ〉)], with 〈cos θ〉 being the
single-scattering asymmetry parameter. One can verify that
�r = �r0 + L�k0/k and �k = �k0, which are expected
results from the ballistic propagation of light through a very
dilute transparent medium of thickness L.

Interestingly, the additional offset L�k/k in the target
intensity distribution suggests that the SAA of the radiative
transfer equation, given in Eq. (6), could be readily applied
to this general case of tilt-tilt and/or shift-shift correlations
by using an “effective distance shift.” A possible substitution
into Eq. (6) would be α → k|�r0 + L�k0/k| for the case in
which �k is on a plane perpendicular to the incident direction.
However, as can be readily verified, �r0 = −L�k0/k would
imply α = 0, which is not a correct result since “shifting” and
“tilting” the incident wave with respect to the media corre-
spond to different symmetry operations. This suggests that
the appropriate effective function should have the form α2 =
k2|�r0 + L�k0/k|2 + η2, where η = η(�r0,�k0) �= 0 for
�r0 = −L�k0/k plays the role of a nonlinear perturbation.
This heuristic approach to finding the approximate α to be
used in the SAA is convenient, since the rigorous solution of
the RT equation taking into account both tilting and shifting
would lead to a very complicated analytical form. In addition,
for dispersive metamaterials we cannot apply Eq. (9), which
provides accurate results only for lossless dielectric scatterers.

To find the correct effective distance shift α to be used
in the SAA solution, we compare Eq. (9) to Eq. (6). By
inspection, it seems convenient to rewrite the paraxial corre-
lation function CFP as a function of the dimensionless variable
α = α(�r,�k). Using an appropriate notation, we rewrite
Eq. (9) as

CFP(α) = exp

(
−Lα2

2	tr

)
, (10)

where we have defined

α ≡ kL

√
|�k|2
3k2

− �k · �r
kL

+ |�r|2
L2

. (11)

Equation (11) is the correct approximate effective distance
shift to be used in our heuristic approach to the RT equation
in the SAA. To demonstrate this, let us consider Eq. (3) for
L > 	tr . For |αθ | � 1, one has the approximation J0(αθ ) ≈
1 − (αθ )2/4, which leads to p̃s(α) ≈ 2π

∫ π

0 dθps(θ )[1 −
(αθ )2/4]θ . Using cos θ ≈ 1 − θ2/2 and recalling the defini-
tion of the scattering asymmetry parameter 〈cos θ〉, we finally
obtain

p̃s(α) ≈ 1 − (1 − 〈cos θ〉)
α2

2
. (12)
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Substituting Eq. (12) into Eq. (6) and considering �0 ≈ 1
(and hence 	ext ≈ 	sca), we retrieve Eq. (10), but now in
the context of the radiative transfer equation in the SAA.
The same result can be obtained from Eq. (4) by using an
appropriate upper limit θmax for the angular integral.

As expected, CFP is an approximation for CRT when
exp(−τ ) ≈ 0, since the FP model does not include ballistic
light [14]. Note that a similar expression for α could be ob-
tained in the SAA using simple geometric arguments. If we fix
�r = �r x̂ and the incident direction along the z axis, while
keeping �k as a free parameter, the approximate distance shift
in the xy plane would be |�r x̂ − L�k(x̂ + ŷ)/k

√
3)|.

Henceforth, we focus our attention on CRT(α), Eq. (6),
evaluated at the effective distance shift given by Eq. (11). Of
course, for �k = 0, Eq. (11) retrieves the shift-shift memory
effect with α = k�r . More importantly, Eq. (11) leads to the
same optimal isoplanatic patch verified experimentally [14],
which is a small area where the focus scan range is limited in
adaptive optics applications [7]. The optimal isoplanatic patch
for a desired distance shift �r on the target plane as a function
of �k is achieved for

�kopt = 3k�r
2L

. (13)

This allows us to compare CRT with CFP not only when �k =
0, but also in the generalized shift-tilt memory effect for the
optimal isoplanatic patch.

It is worth emphasizing that the general expression of
CRT(α), given in Eq. (6), cannot be compared with CFP(α) di-
rectly. For τ < 1, one has to subtract the constant background
contribution I0 exp(−τ ) from �(α) and then normalize it (see,
e.g., the discussion in Ref. [14]). As shown in Eq. (8), the
constant background in the correlations depends on the shape
of scatterers and is related to the ballistic light contribution
and, hence, is beyond the FP model.

III. SPATIAL CORRELATIONS IN THERMALLY TUNABLE
MAGNETO-OPTICAL MEDIA

Let us study the shift-shift and tilt-tilt correlations in the
framework of the rigorous Lorenz-Mie theory and the radia-
tive transfer equation in the SAA. Here, we are interested in
a two-dimensional disordered medium composed of parallel
cylinders normally irradiated with plane waves. By a two-
dimensional scattering medium we mean that the lengths of
cylinders are much larger than both the incident wavelength
and their diameters, so that most of the light is scattered on the
plane perpendicular to the cylinder axis [35]. In particular, the
cylindrical geometry allows us to describe the application of
an external magnetic field along the z direction exactly, and it
can be realized experimentally (see, e.g., Refs. [22] and [40]
and references therein). However, before studying a tunable
metamaterial, it is worth presenting the dielectric case and
comparing cylindrical and spherical scatterers, since the latter
are widely investigated in spatial correlations [13,32].

A. Optical memory effect for dielectric spheres and cylinders

Within the framework of the Lorenz-Mie theory, the ex-
act single-scattering phase function for spherical particles of
radius R interacting with plane waves is ps(θ ) = (|S1|2 +

FIG. 1. Phase function p(θ ) calculated by the rigorous Lorenz-
Mie theory for a silica (εSiO2 = 2.25) sphere (a) and a silica cylinder
(b) embedded in agarose gel (nag = 1.34). Both sphere and cylinder
have radius R = 0.1 mm and are normally irradiated with plane
waves at a frequency ω = 2π × 2.4 THz (kR ≈ 6.74). The forward-
peaked single scattering for this set of parameters allow us to use
the small-angle approximation of the radiative transfer equation for
small optical thicknesses [39].

|S2|2)/[2π (kR)2Qs
sca], where S1 and S2 are dimensionless

scattering amplitudes [35,41]. Similarly, for cylinders of ra-
dius R normally irradiated with s waves (E||ẑ) [35,41], one
has pc(θ ) = |T1|2/[πkRQc

sca], where T1 is the dimensionless
scattering amplitude for s-polarized waves; for p waves (E ⊥
ẑ), one must consider T2 instead of T1 and the corresponding
Qc

sca [35,41].
To compare spherical and cylindrical scattering geome-

tries, we consider that the scatterers are made of silica (SiO2)
and have the same radius R = 0.1 mm. Here, we are interested
in the THz frequency region, for which εSiO2 ≈ 2.25 is the
silica permittivity. The sphere (or cylinder) is embedded in a
polymer binding matrix of refractive index nag = 1.34 (e.g.,
agarose gel) [13]. The scatterer is irradiated with plane waves
at frequency ω = 2π × 2.4 THz, which leads to kR ≈ 6.74.

In Fig. 1, we plot the normalized phase functions corre-
sponding to a spherical [Fig. 1(a)] and a cylindrical [Fig. 1(b)]
SiO2 scatterer in agarose gel. Clearly both ps(θ ) and pc(θ )
are forward-extended phase functions, with 〈cos θ〉 ≈ 0.937
for the sphere and 〈cos θ〉 ≈ 0.972 (p waves) and 〈cos θ〉 ≈
0.960 (s waves) for the cylinder. For this set of parameters, we
can apply the small-angle approximation of the RT equation.
According to Ref. [39], the SAA is robust for moderate-
sized parameters (kR > 6.6) if one considers small optical
thicknesses τ .

A system of monodispersed spheres (or parallel cylinders)
of small optical thicknesses can be realized by considering
a medium with a low density of scatterers (f � 1). Let
us consider a packing fraction f = 0.45% and large slab
thickness compared to R = 0.1 mm (L � 95R) in the THz
frequency range. For this set of parameters, the speckle is not
yet fully developed, implying a constant background in the
spatial correlation function C(�r,�k).

To show the effect of the background in the correlations,
we compare in Fig. 2 the Fokker-Planck model with the
solution of the radiative transfer equation in the SAA. In
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FIG. 2. Spatial correlation function C(�r, �k) as predicated by the radiative transfer (RT) equation and by the Fokker-Planck (FP) equation
for silica (SiO2) monodispersed scatterers in agarose gel normally irradiated with p or s waves. The phase functions are calculated by the
rigorous Lorenz-Mie theory for SiO2 spheres or cylinders with radius R = 0.1 mm (kR ≈ 6.74) and packing fraction f = 0.45%, for various
slab thicknesses L and ω = 2π × 2.4 THz. (a) Comparison between CRT (with the background contribution subtracted) for spheres and CFP

for �k = 0. Solid lines correspond to CRT; dashed lines, to CFP. (b) Shift-tilt memory effect for the optimal isoplanatic patch condition �k =
3k�r/2L. For spheres or cylinders, (c) the shift-shift (�k = 0) and (d) the shift-tilt (�k = 3k�r/2L) correlations CRT are approximately the
same.

Fig. 2(a), we plot the shift-shift memory effect (�k = 0),
where CRT(k�r ) and CFP(k�r ) are calculated for a system
of spherical scatterers. The definition of the CRT(k�r ) was
modified in order to subtract I0 exp(−τ ) from the transverse
coherence function �(α) [14]. As can be verified, the two the-
ories show good agreement even for small optical thicknesses
(τ < 1), as long as we neglect the ballistic (nonscattered) light
contribution. In particular, Fig. 2(b) shows that the heuristic
approach using the effective distance shift α into CRT(α)
agrees with the Fokker-Planck model.

Figures 2(b) and 2(c) show the profiles of the spatial corre-
lations CRT(�r,�k) including the ballistic light contribution
as a function of the slab thickness L. In particular, Fig 2(b)
can be compared with Fig. 3 in Ref. [13]. For both spherical
and cylindrical scatterers, CRT(α) in Fig. 2(c) and Fig. 2(d)
decreases with increasing L and approaches CFP(α) plotted in
Fig. 2(a) and Fig. 2(b), respectively. In addition, as shown in
Eq. (7), note that the difference in the shift-shift correlation
function for spheres vs cylinders is very small. Indeed, for our

set of parameters, we have verified that Cs(α) ≈ Cc(α). This
means that one can basically retrieve the spatial correlations of
a three-dimensional anisotropically scattering medium from a
two-dimensional system with equivalent parameters.

B. Optical memory effect in magneto-optical disordered media

The optical memory effect can be tuned by changing the
optical thickness τ of an anisotropically scattering media.
As shown in Fig. 2, C(k�r ) can be trivially enhanced by
considering lower values of slab thickness L within the SAA.
Indeed, for �k = 0, one can verify that [13]

C(k�r, ηL) = [C(k�r, L)]η. (14)

This can be straightforwardly confirmed by the definition
of C(α); see Eqs. (6) and (8). However, it is interesting to
have external parameters that could change the memory effect
without changing the geometry or density of particles.
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FIG. 3. Thick cylinders (kR � 1) irradiated with p waves
(Hi||ẑ) at the presence of an external magnetic field B = B ẑ. Scat-
terers are composed of a dielectric SiO2 cylinder coated with a sub-
wavelength magneto-optical shell of InSb embedded in agarose gel,
with packing fraction f � 1. The InSb cylindrical shell is strongly
dependent on the external magnetic field and the temperature T .

Here, we propose the use of thermally and magnetically
tunable semiconductors with moderate permittivity in the THz

frequency range [31,42,43] to control the shift-shift and tilt-
tilt memory effects. The main idea is to use subwavelength
coatings that are strongly dependent on the temperature and
the external magnetic field and exhibit a low refractive in-
dex. These features could be achieved with semiconductor
materials that are known to exhibit a high cyclotron fre-
quency ωc, such as InSb, InAs, HgTe, Hg1−xCdxTe, PbTe,
PbSe, PbS, and GaAs [44,45]. For our calculations, we con-
sider a subwavelength coating of indium antimonide (InSb)
[46–48], whose dielectric tensor that fits experimental data
can be found in Refs. [31], [42], and [43]. In particular, we
use the complete Lorenz-Mie theory for coated magneto-
optical cylinders derived in Ref. [31]. The system geometry
is illustrated in Fig. 3.

Figure 4 shows the possibility of tuning the anisotropic
memory effect by changing the temperature of the disordered
system. The system is composed of thick cylinders of radius
R = 0.1 mm irradiated with p waves with ω = 2π × 2.4 THz
(kR ≈ 6.74), as depicted in Fig. 3. Once again, as in Fig. 2(c)
and Fig. 2(d), the cylinders are composed of SiO2 in a
polymer-binding matrix of agarose gel. However, we consider
now that the cylinders are coated with a very thin, homoge-
neous subwavelength layer of InSb of thickness d = 1 μm

FIG. 4. Spatial correlation function C(�r, �k) for monodispersed (SiO2) core-shell (InSb) cylinders in agarose gel (f = 0.45%) normally
irradiated with p waves (ω = 2π × 2.4 THz). The core-shell cylinder has radius R = 100 μm (kR ≈ 6.74), where the SiO2 core is coated with
a InSb single layer of thickness d = 1 μm (kd ≈ 0.0674). The phase function is calculated by the rigorous Lorenz-Mie theory. (a) Plot showing
the increase in C as a function of the temperature T for slab thickness L = 9.5 mm and �k = 0, where the maximum memory effect within
the validity of the SAA is found for T = 315 K. (b) Shift-tilt memory effect for the optimal isoplanatic patch condition �k = 3k�r/2L.
Even small correlations for a large slab thickness (L = 4 × 9.5 mm) can be considerably enhanced by increasing T for (c) �k = 0 and (d)
�k = 3k�r/2L.
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FIG. 5. Shift-shift correlation function C(�r, �k) for monodispersed (SiO2) core-shell (InSb) cylinders in agarose gel (f = 0.45%)
normally irradiated with p waves (ω = 2π × 2.4 THz). The core-shell cylinder has radius R = 100 μm (kR ≈ 6.74), where the SiO2 core
is coated with a InSb single layer of thickness d = 1 μm (kd ≈ 0.0674). The phase function is calculated by the rigorous Lorenz-Mie theory.
The plots show that the maximum correlation achieved for T = 315 K in Fig. 4 can be decreased by the application of an external magnetic
field B = B ẑ. (a) L = 9.5 mm and �k = 0. (b) L = 9.5 mm and �k = 3k�r/2L. (c) L = 4 × 9.5 mm and �k = 0. (d) L = 4 × 9.5 mm and
�k = 3k�r/2L.

(kd ≈ 0.0674). Since the refractive index of InSb is moderate
in the THz range for low temperatures and moderate magnetic
fields, a subwavelength shell (R/d = 100) guarantees that the
effective refractive index of the whole scatterer is dominated
by the refractive index of the SiO2 core. Indeed, despite the
lossy InSb shell, we have verified that the single-scattering
albedo is � c

0 ≈ 1.
In Fig. 4(a) and Fig. 4(b) we calculate CRT(α) for the

slab thickness L = 9.5 mm. Once again, we focus on the
shift-shift memory effect (�k = 0) and the shift-tilt memory
effect under the optimal isoplanatic patch condition (�k =
3k�r/2L). In the temperature range 215 K < T < 315 K,
we show unprecedented control of the spatial correlations in
anisotropically scattering media (0.916 < 〈cos θ〉 < 0.974).
Without changing any geometrical parameter of the system as
we have done in Fig. 2, the spatial correlation is continuously
enhanced as the temperature increases. In particular, a greater
variation in CRT(α) is achieved in the range 275 K < T <

315 K. For T > 315 K, the system exhibits 〈cos θ〉 < 0.9,
and hence the SAA cannot be applied accurately. For the
range 150 K < T < 215 K, we have verified that the spatial
correlation remains approximately constant. In particular, in
Fig. 4(c) and Fig. 4(d) we consider L = 4 × 9.5 mm, which
corresponds to a configuration of lower spatial correlation.

Even in this case, we can considerably enhance the spatial
correlation by increasing the temperature.

Figure 5 shows that applying an external magnetic field
B = B ẑ has the opposite effect on CRT(α) compared to in-
creasing the temperature of the system. Fixing T = 315 K,
i.e., the maximum spatial correlation obtained in Fig. 4 for
our set of parameters, we can retrieve the spatial correla-
tions of lower temperatures just by increasing B. Indeed, the
plots in Figs. 5(a)–5(d) for 0 T < B < 3 T and T = 315 K
(0.916 < 〈cos θ〉 < 0.952) can be mapped in Figs. 4(a)–4(d),
where 275 K < T < 315 K and B = 0. For B > 3 T, we have
verified that the spatial correlation remains approximately
constant. Physically, this decreasing of the correlation as a
function of B can be explained by the breaking of degeneracy
of the multipole scattering channels for B �= 0 [31].

In Fig. 5(c) and Fig. 5(d) we repeat the same analysis as
in Fig. 4(c) and Fig. 4(d) for L = 4 × 9.5 mm, showing the
effect of B �= 0 on a configuration of lower spatial correlation.
By comparing Fig. 4 and Fig. 5, we show explicitly that the
optical memory effect can be tuned by T and B to enhance
or decrease the spatial correlation, respectively. Indeed, for
B = 0, one can design configurations of low temperature T0

and small slab thickness L0 whose spatial correlations match
a configuration of higher temperature T > T0 and greater
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slab thickness L > L0. The same idea can be applied for
B �= 0 and a fixed temperature, where a configuration in a low
magnetic field B0 with large slab thickness L0 can reproduce
the same shift-tilt memory effect of a configuration in a higher
magnetic field B > B0 with a smaller slab thickness L < L0.

IV. CONCLUSION

We have proposed a material platform, based on core-shell
metamaterials, to enhance and externally tune memory effects
in disordered optical media. In addition, we have provided
further understanding of these effects by deriving an approxi-
mate expression for the generalized optical memory effect in
the context of ballistic propagation of light. Here, we have
investigated optical memory effects for cylindrical scatterers
and have established a connection between the shift-shift
memory effect for cylinders and spheres, which correspond
to the case that has been treated so far. In particular, for
monodispersed large scatterers, the ballistic light contribution
in the transverse coherence function is shown to depend
only on geometric parameters of the system. By considering
an anisotropically two-dimensional scattering medium con-
taining thick dielectric cylinders coated with subwavelength
magneto-optical layers, we have demonstrated unprecedented
control of the spatial correlations in disordered scattering
media, and that cannot be achieved with naturally occurring
optical media, such as biological tissues. Indeed, we have
shown that the shift-shift and tilt-tilt correlation in the THz
regime for (SiO2) core-shell (InSb) cylinders can be enhanced
by increasing the temperature, and it can be decreased by
applying an external magnetic field. Altogether, the present
findings demonstrate the versatility of coated metamaterial
scatterers to control optical memory effects, opening new
vistas for the engineering of photonic disordered devices.
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APPENDIX: SINGLE-SCATTERING PHASE FUNCTIONS
FOR LARGE SPHERES AND THICK CYLINDERS

Approximate phase functions for spheres and cylinders
of radius R in the limit of large scatterers compared to
the wavelength (kR � 1) are well known [35,41]. From the
diffraction theory, large spheres provide phase functions of the
form [33,41]

ps(θ ) ≈ 1

4π
(1 + cos θ )2

[
J1(kR sin θ )

sin θ

]2

. (A1)

Over the angular region of interest, one usually takes (1 +
cos θ )/2 ≈ 1 for kR sin θ > 10 to a very good approxi-
mation [35]. Here, we maintain this prefactor to highlight
similarities between spherical and cylindrical scattering ge-
ometries. Equation (A1) leads to p̃s(0) ≈ 1 − J 2

0 (πβ/2) −
J 2

1 (πβ/2) = 1 − 4/(π2β ) for |θ | � 1. For an arbitrary α, one
has the well-known approximation [37,49]

p̃s(α) ≈ 2

π

⎡⎣arccos

(
α

β

)
− α

β

√
1 −

(
α

β

)2
⎤⎦u(α), (A2)

where β = 2kR, u(α � β ) = 1, and u(α > β ) = 0. Note that
Eq. (A2) implies that the transverse coherence function �(α)
depends only on τs and � s

0 for α > β.
We can obtain a similar result regarding cylindrical scatter-

ers. The phase function of infinitely long cylinders with kR �
1, upon a normal incidence of radiation with arbitrary polar-
ization, can be approximated by the diffraction theory [35],

pc(θ ) ≈ 1

4π
(1 + cos θ )2

[
sin(kR sin θ )√

kR sin θ

]2

, (A3)

which leads to p̃c(0) ≈ (2/π )
∫ πkR

0 dξ (sin ξ/ξ )2 → 1 as
kR → ∞. Also, one has

p̃c(α) ≈ 2

π

∫ πβ/2

0
dξ

sin2 ξ

ξ 2
cos

(
2α

β
ξ

)
, (A4)

where p̃c(α > β ) ≈ 0. Indeed, we have verified that Eq. (A2)
is also a good approximation for p̃c(α). By inspection
of Eqs. (3) and (A1), this approximate equality between
spherical and cylindrical cases follows from the asymp-
totic expansions J0(z) ≈ √

2/πz cos(z − π/4) and J1(z) ≈√
2/πz sin(z − π/4) for |z| � 1 [35].
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